Rapid high-fidelity contour shaping of titanium mesh implants for cranioplasty defects using patient-specific molds created with low-cost 3D printing: A case series
-
Received: ,
Accepted: ,
Abstract
Background:
Cranioplasty is a neurosurgical procedure to repair skull defects. Sometimes, the patients’ bone flap cannot be used for various reasons. Alternatives include a custom polyether ether ketone (PEEK) implant or titanium mesh; both incur an additional cost. We present a technique that uses a 3D printer to create a patient- specific 3D model used to mold a titanium mesh preoperatively.Case Description:
We included three patients whose bone flap could not be used. We collected the patients’ demographics, cost, and time data for implants and the 3D printer. The patients’ computed tomography DICOM images were used for 3D reconstruction of the cranial defect. A 3D printer (Flashforge, CA) was used to print a custom mold of the defect, which was used to shape the titanium mesh. All patients had excellent cosmetic results with no complications. The time required to print a 3D model was ~ 6 h and 45 min for preoperative shaping of the titanium implant. The intraoperative molding (IOM) of a titanium mesh needed an average of 60 min additional operative room time which incurred $4000. The average cost for PEEK and flat titanium mesh is $12,600 and $6750. Our method resulted in $4000 and $5500 cost reduction in comparison to flat mesh with IOM and PEEK implant.Conclusion:
3D printing technology can create a custom model to shape a titanium mesh preoperatively for cranioplasty. It can result in excellent cosmetic results and significant cost reduction in comparison to other cranioplasty options.Keywords
INTRODUCTION
Decompressive craniectomy is a potentially life-saving operation for patients with cerebral edema resulting from traumatic brain injury, stroke, or intracerebral hemorrhage.[1,11] The procedure involves removing a portion of the patient’s skull to allow the swollen brain to expand and minimize the risk of hydrocephalus and uncal herniation. Cranioplasty is a procedure used to cover a bony defect of a skull. It uses the patient’s bone flap or a suitable alternative.[8] The alternative materials include a custom polyether ether ketone (PEEK), custom titanium mesh, or flat titanium mesh with intraoperative molding (IOM). 3D printing technology has been increasingly used in medicine and it has multiple benefits such as the customization of implants, cost-effectiveness, increased productivity, and the democratization of design and manufacturing.[2,4,5,9,10] Here, we present a technique for using a low-cost 3D printer to create a patient-specific custom mold of the cranial defect, which then can be used as a template to shape a titanium mesh preoperatively.
CASE DESCRIPTION
We included three patients whose bone flap could not be used for various reasons. We collected the patients’ demographics as well as the time and cost data of the cranioplasty implants, 3D printer, IOM, and operating room (OR) usage. We summarized data using means, ranges, and percentages.
The technique for preparing the 3D mold
The patients’ pre- and post-hemicraniectomy CT scans DICOM images were imported into Osirix (Pixmeo, Switzerland) and converted into a 3D model, which was then exported to MeshLab for editing and 3D reconstruction of the cranial defect. A MakerBot (MakerBot, NY) software was then used to convert the files into a form compatible with the 3D printer. A Flashforge Creator Pro 3D printer (Flashforge, CA) was used to print a custom mold of the cranial defect for each patient. We used the custom mold to shape and size a 1 mm thickness Stryker Leibinger flat titanium mesh (200x200 mm) (Stryker, MI), which was then sent for sterilization and storage before the day of surgery [Figure 1].

CASE ILLUSTRATIONS
Case 1
A 49-year-old male with a history of a gunshot wound to the head that resulted in left-sided acute subdural hematoma requiring a decompressive hemicraniectomy. Because of concerns over the infection and extensive damage to the patient’s skull from the gunshot, the patient’s bone flap was not able to be used for cranioplasty. Therefore, we used the 3D printer to print a custom model to mold the titanium mesh preoperatively.
Case 2
A 23-year-old male with a history of severe traumatic brain injury due to a motor vehicle accident that required a hemicraniectomy. The initial cranioplasty was done using the patient’s bone flap, but the patient developed a wound infection with extension into the bone flap that required revision with the disposal of the bone flap. After the infection was treated, we used the 3D-printed custom mold to shape the titanium mesh preoperatively.
Case 3
A 17-year-old male with a history of a gunshot wound to the head that required a bifrontal decompressive craniectomy. His frontal bone was shattered by the injury and was not suitable for cranioplasty. Therefore, we used a 3D-printed mold to shape the titanium mesh preoperatively.
RESULTS
All three procedures were uneventful with no complications, and the patients had excellent cosmetic results [Figure 2]. Time analysis revealed that the preoperative printing of a 3D model and shaping of the titanium mesh required 5–7 h and 45 min, respectively. The intraoperative molding of the titanium mesh without the use of the 3D model needed an average of 60 min (45–90 min). The cost of the 3D printer and printing material [acrylonitrile butadiene styrene (ABS), (MakerBot, NY)] was $1350 and $25/kg, respectively. One kilogram of ABS can generate several (7–10) 3D models. At our hospital, the cost of operating room usage is $1000/15 min similar to the national average. Furthermore, the average cost of the PEEK implant and the flat titanium mesh was $12,600 ($11,500–$14,000) and $6750 ($5500–$8000), respectively [Table 1]. The intraoperative molding incurred an average of $4000 ($3000–$6000) per patient. Our method resulted in $4000 and $5500 cost saving in comparison to flat mesh with IOM and PEEK implant, respectively.


DISCUSSION
Cranioplasty is a common neurosurgical procedure and is performed for several reasons.
The use of the patient’s bone flap is associated with excellent esthetic results at no additional cost for implants. Under certain circumstances, the use of the patients’ bone flap is not feasible because of mechanical damage, tumor invasion, or infection. In that case, several alternatives are available including a custom PEEK implant, custom titanium mesh, or flat titanium mesh with intraoperative or preoperative molding. Multiple factors dictate the superiority of one option in comparison to others such as cost, cosmetic results, any additional operative time needed, and risk for infection. The flat titanium mesh is cost effective as it costs $5000–8000/ sheet, but it requires intraoperative molding which adds an average of 60 min to the total time of the procedure. This translates into an additional average cost of $4000 as the cost of the use of an operating room in the U.S. averages about $62/min.[7] Besides cost, this additional OR time increases the patient’s risk for perioperative complications. Intraoperative molding can lead to poor cosmetic outcomes since the soft tissues often obscure the contour of the surrounding skull, and the head position and surgical drapes make it difficult to compare cranioplasty side to the contralateral side of the head.
Our technique uses a relatively inexpensive desktop 3D printer to create a patient-specific 3D model used to shape and size the titanium mesh preoperatively with no need for intraoperative molding. The elimination of the intraoperative molding saves about 60 min of intraoperative time which translates into a $4000 cost reduction. Besides, our method results in an implant with superior cosmetic results as its shaped using a model made based on the patient’s precraniectomy CT images. The previous reports have shown that the use of the commercially available custom cranioplasty implants (e.g., PEEK) requires no additional molding time in the operating room, have lower complication rates, and better cosmetic outcomes in comparison to intraoperative molded titanium implants.[6,7] However, these custom PEEK implants are costly (average $12,600) because of the technology and processes needed to create them.[3,7] Our method makes it possible to create an implant with quality, cosmetic outcomes, and ease of implantation similar to the PEEK implants and with a significant cost saving ($5500). Additional advantages of our method are the immediate availability for use and the ability to create several 3D models for implants molding as the printing material cost is nearly negligible. In comparison, the commercial custom implants require 5–10 days from ordering to delivery with a risk for cancellation of surgery if the delivery process was interrupted.
CONCLUSION
The low-cost 3D printing technology allows a timely creation of patient-specific cranial implants with improved esthetic outcomes and significant cost saving. It has the potential to revolutionize the socioeconomic paradigm of medical implants.
Declaration of patient consent
Patient’s consent not required as patients identity is not disclosed or compromised.Financial support and sponsorship
Nil.Conflicts of interest
There are no conflicts of interest.REFERENCES
- J Neurosurg. 2006;104:469-79.Outcome following decompressive craniectomy for malignant swelling due to severe head injury.
- [Google Scholar]
- IEEE Pulse. 2013;4:22-6.Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization.
- [Google Scholar]
- J Craniofac Surg. 2015;26:113-7.A comparison and cost analysis of cranioplasty techniques: Autologous bone versus custom computer-generated implants.
- [Google Scholar]
- Anal Chem. 2014;86:3240-53.Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences.
- [Google Scholar]
- World Neurosurg. 2013;80:233-5.3D printing and neurosurgery-ready for prime time?
- [Google Scholar]
- J Craniomaxillofac Surg. 2014;42:1948-51.Interval cranioplasty with patient-specific implants and autogenous bone grafts-success and cost analysis.
- [Google Scholar]
- J Clin Anesth. 2010;22:233-6.What does one minute of operating room time cost?
- [Google Scholar]
- Neurosurgery. 1997;40:588-603.Repairing holes in the head: A history of cranioplasty.
- [Google Scholar]
- Br J Ophthalmol. 2014;98:159-61.Innovations in 3D printing: A 3D overview from optics to organs.
- [Google Scholar]
- J Am Pharm Assoc (2003). 2013;53:136-44.Three-dimensional drug printing: A structured review.
- [Google Scholar]
- PLoS One. 2011;6:e29193.Craniectomy for malignant cerebral infarction: Prevalence and outcomes in US hospitals.
- [Google Scholar]
Fulltext Views
15
PDF downloads
4